

## Agenda

- Perceptions and premise
- Architecture differences

- Terminology differences
- Process area differences

Summary



## **Perceptions**

- 1993 "The CMM for Software is intended for large, monolithic DoD software projects. It won't work in the real world of small projects in commercial companies."
- 2001 "The CMMI is intended for large, monolithic DoD systems engineering projects. It won't work in the real world of small projects in commercial companies."



### **Premise**

- Just like the Software CMM, CMMI can be used effectively by a large array of projects/organizations
  - APPROPRIATELY INTERPRETED AND APPLIED WITH JUDGMENT







### **CMMI Architecture Differences**

- Two representations allow choices
  - Staged pre-sequenced grouping of process areas
  - Continuous user-sequenced application
- Specific and Generic Goals/Practices provide a more strict and logical hierarchy

Discipline-specific amplifications provide guidance for software vs. systems engineering functions



# Terminology Differences Product/Product Components

### CMMI terminology

- Product final system delivered to customer
- Product component subsystems/modules built separately and integrated into final product

### Software-only terminology

- System final product delivered to customer
- Subsystems/Modules product components built separately and integrated into final product



## Terminology Differences Local/Global

### CMMI terminology

- ❖ Local project or team working as a unit on a specific scope
- Global larger group of projects/teams working as a unit on a business scope

### Software-only terminology

- Project team working on a specific system/scope
- Organization larger group of projects working as a unit on a business scope



# Terminology Differences Goals, Practices, Sub-practices

### CMMI terminology

- Goals required to be satisfied in order to achieve capability/maturity
- Practices expected to be implemented to satisfy goals
- Sub-practices informative material intended as a guide to implementing goals

### Software-only terminology

- ❖ Goals required to be satisfied in order to achieve maturity
- ❖ Key Practices most assessors require to be satisfied
- Sub-practices varied interpretation, from required to informative



# Process Area Differences Requirements Management

#### **// CMMI**

❖ Added requirement to maintain bi-directional traceability



# Process Area Differences Project Planning

### **// CMMI**

- ❖ Establish estimates scope, attributes, life cycle, effort and cost
- Develop plan budget, schedule, risks, data management, resources, training, stakeholder involvement
- Obtain commitment to plan

- Create estimates size, cost, effort, schedule, critical resources, life cycle
- Develop plan SDP
- Obtain commitment to plan



## Process Area Differences Supplier Agreement Management

#### // CMMI

- Establish Customer/supplier relationship and agreement
  - ☐ Analyze needs and requirements
  - ☐ Select suppliers
  - ☐ Establish agreement
- Satisfy agreement
  - ☐ Acquire COTS
  - ☐ Execute agreement
  - ☐ Conduct acceptance testing
  - ☐ Transition product

- Select Subcontractor
- Establish contract
- Monitor performance
- Perform acceptance testing



# Process Area Differences Measurement and Analysis

### **// CMMI**

- Separate process area
- Institutionalize a measurement and analysis process
- Measures used (indirectly) as a part of monitoring and controlling each process area

- Measurement and analysis common feature in every process area
- Measures established and used to monitor the status and effectiveness of the process



# Process Area Differences Engineering Process Areas (RM)

### // CMMI – Requirements Development PA

- ❖ Develop Customer Requirements stakeholder needs, expectations, constraints and interfaces lead to...
- Develop requirements customer requirements elaborated into product requirements...
- Analyze and validate requirements resulting in defined functionality

### // SW-CMM

One practice in SPE – systematically analyze requirements



# Process Area Differences Engineering Process Areas (TS)

### // CMMI – Technical Solution PA

- Select appropriate solution
- Develop the design
- Implement the design

- One practice in SPE addresses software design
- One practice in SPE addresses coding



## Process Area Differences Engineering Process Areas (PI)

### // CMMI – Product Integration PA

- Prepare for integration
- Ensure interface compatibility
- \* Assemble components and deliver solution

- ❖ Assumes subsystems/modules will be integrated through testing activities
  - ☐ Partially covered in SPP (planning for testing facilities)
  - ☐ Partially covered in SCM (interface change control)
  - ☐ Partially covered in SPE (integration through multiple levels of testing)



## Process Area Differences Engineering Process Areas (VER)

#### CMMI – Verification PA

- Verification = satisfaction of requirements
- Prepare for verification
- Perform peer reviews
- Verify selected work products

- Preparation through SPP (planning for testing facilities)
- Verification of requirements satisfaction through:
  - ☐ Peer Review KPA
  - ☐ Testing (SPE)
  - ☐ Requirements change control (RM)
  - ☐ Requirements traceability (SPE)



# Process Area Differences Engineering Process Areas (VAL)

### // CMMI – Validation PA

- Validation = performance in operational environment
- Prepare for validation
- Validate product or product components

- Preparation through SPP (planning for testing facilities)
- Validation through acceptance testing (SPE)



# Process Area Differences Risk Management

### **// CMMI**

- Single practices in PP and PMC
- Risk Management PA
  - ☐ Prepare for risk management
  - ☐ Identify and analyze risks
  - ☐ Mitigate risks

### SW-CMM

Single practices in SPP, SPTO, ISM



# Process Area Differences Decision Analysis and Resolution

### **// CMMI**

- Evaluate alternatives
- Structured decision-making process applied to any PA where appropriate

- PCM and TCM at Maturity Level 5
  - ☐ Focus is on cost/benefit



## Summary

- There are differences between CMMI and SW-CMM
  - \* Architecture
  - Terminology
  - Process Areas
- Equalizes emphasis on Engineering and Management processes
  - Requires interpretation to relate systems engineering terminology and approach to typical software development
- With appropriate interpretation:
  - ❖ CMMI \*\* will \*\* work for software-only organizations
  - Software-only organizations can gain significant benefit from SW-CMM lessons learned and incorporated into CMMI

